C: Scaling a Stream Analytics job takes advantage of partitions in the input or output. Partitioning lets you divide data into subsets based on a partition key. A process that consumes the data (such as a Streaming Analytics job) can consume and write different partitions in parallel, which increases throughput. E: Streaming Units (SUs) represents the computing resources that are allocated to execute a Stream Analytics job. The higher the number of SUs, the more CPU and memory resources are allocated for your job. This capacity lets you focus on the query logic and abstracts the need to manage the hardware to run your Stream Analytics job in a timely manner. Reference: https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-parallelization https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-streaming-unit-consumption