
Explanation:
Use the Split data into partitions option when you want to divide the dataset into subsets of the data. This option is also useful when you want to create a custom number of folds for cross- validation, or to split rows into several groups.
1. Add the Partition and Sample module to your experiment in Studio (classic), and connect the dataset.
2. For Partition or sample mode, select Assign to Folds.
3. Use replacement in the partitioning: Select this option if you want the sampled row to be put back into the pool of rows for potential reuse. As a result, the same row might be assigned to several folds.
4. If you do not use replacement (the default option), the sampled row is not put back into the pool of rows for potential reuse. As a result, each row can be assigned to only one fold.
5. Randomized split: Select this option if you want rows to be randomly assigned to folds. If you do not select this option, rows are assigned to folds using the round-robin method.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/partition-and- sample