正解:B
Coefficient of determination, often referred to as R2, represents the predictive power of the model as a value between 0 and 1. Zero means the model is random (explains nothing); 1 means there is a perfect fit. However, caution should be used in interpreting R2 values, as low values can be entirely normal and high values can be suspect.
Incorrect Answers:
A: Root mean squared error (RMSE) creates a single value that summarizes the error in the model. By squaring the difference, the metric disregards the difference between over-prediction and under-prediction.
C: Recall is the fraction of all correct results returned by the model.
D: Precision is the proportion of true results over all positive results.
E: Mean absolute error (MAE) measures how close the predictions are to the actual outcomes; thus, a lower score is better.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/evaluate- model