Universal Containers (UC) は生成 AI を実装しており、プロンプト テンプレートを活用して、閲覧履歴に基づいて Web サイト訪問者にパーソナライズされた製品の推奨を提供する応答を顧客に提供したいと考えています。
チャットボットが正確な推奨事項を提供できるようにするために、UCはどのような初期ステップを踏むべきでしょうか?
正解:C
To enable personalized product recommendations using generative AI, the foundational step for Universal Containers (UC) is collecting and analyzing browsing data (Option C). Personalized recommendations depend on understanding user behavior, which requires structured data about their browsing history. Without this data, the AI model lacks the context needed to generate relevant suggestions.
* Data Collection: UC must first aggregate browsing data (e.g., pages visited, products viewed, session duration) to build a dataset that reflects user preferences.
* Data Analysis: Analyzing this data identifies patterns (e.g., frequently viewed categories) that inform how prompts should be structured to retrieve relevant recommendations.
* Grounding in Data: Salesforce's Prompt Templates rely on grounding data to generate accurate outputs. Without analyzing browsing data, the prompt template cannot reference meaningful insights for personalization.
Options A and D are incorrect because:
* Universal recommendations (A) ignore personalization, which is the core requirement.
* Writing a response script (D) addresses chatbot interaction design, not the accuracy of recommendations.
References:
* Salesforce AI Specialist Certification Guide: Highlights the importance of grounding prompts in relevant data sources to ensure accuracy.
* Trailhead Module: "Einstein for Developers" emphasizes data preparation as a prerequisite for effective AI-driven personalization.
* Salesforce Help Documentation: Recommends analyzing user behavior data to tailor generative AI outputs in commerce use cases.